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Acoustics as a branch of fluid mechanics 

By D. G. CRIGHTON 
Department of Applied Mathematical Studies, 
University of Leeds, Leeds LS2 SJT, England 

This article gives a review of six areas of current activity and importance in aero- 
acoustics, including (i) the generation of sound and vorticity by vorticity and sound, 
respectively, (ii) the basis for, and consequences of, the application of a Kutta condi- 
tion in unsteady leading- and trailing-edge flows, and (iii) the suppression or amplifica- 
tion of broadband hydrodynamic and acoustic fields in a jet under the influence of 
weak discrete tone forcing. The intention is also to promote acceptance once again 
of acoustics as a serious branch of fluid mechanics. 
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1. Introduction 
In  the hundred years since the appearance of the first edition of Lord Rayleigh’s 

celebrated Theory of Sound (1877))  the science of acoustics has departed from its 
original place as a branch of fluid mechanics, developed into many areas quite un- 
related to fluid mechanics, and then returned again (in part, at  any rate) to that field 
as a modern, vigorous branch. Acoustics was in Rayleigh’s time the science dealing, 
in the main, with small disturbances with characteristic frequencies in the audible 
range, to air and water of substantially uniform properties. It was generally assumed 
that the primary means of acoustical excitation would be mechanical, and hence the 
extensive treatment of structural vibration in Rayleigh’s treatise. There is, however, 
a clear antecedent of modern aeroacoustic theory in Art. 296, where a forced ‘ Lighthill 
wave equation’ is derived to predict the scattered radiation from a compact density 
inhomogeneity. Further antecedents of modern acoustic ideas are to be found in the 
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sections on jet and shear-layer stability, while there are also hints of the many direc- 
tions subsequently taken by acoustics which are much less intimately related to the 
mainstream of fluid mechanics. 

By the turn of the century, i t  appeared that little remained to  be done in acoustics, 
as far as ordinary media under ordinary conditions were concerned. A few major ideas 
emerged over the next fifty years in what might be called the fluid-mechanical aspects 
of acoustics, notably Taylor’s (1910) theory of the structure of a weak shock wave and 
the remarkable paper by Fay (1931) on stable periodic nonlinear waves in a thermo- 
viscous gas, in which, as in Taylor’s solution, thin weak shocks separate essentially 
inviscid flows and have a structure in which a balance is struck between convective 
nonlinearity and diffusion. The effects under discussion here are fundamental in fluid 
mechanics (although Fay’s paper is hardly known outside the nonlinear acoustics 
community), and a few more such examples were thrown up by acoustics prior to  
1950. To be sure, acoustics itself developed a t  a rapid pace throughout that  time, but 
generally by diversifying into areas increasingly remote from those of Rayleigh’s 
time. The topics of speech communication, phonetics, physidogical acoustics, psycho- 
acoustics, ultrasonics, physical acoustics (largely the inference of the bulk properties 
of solid matter from study of the propagation in the solid of shear and compression 
waves), noise and its objective and subjective quantification, signal processing.. . 
came to the forefront in acoustics, and still form the subjects of intensive research. 
These have tended to  take acoustics into physics in parallel with fluid mechanics, 
rather than as a branch of it. Mathematical problems in the theory of acoustic diffrac- 
tion of course remained throughout this time, as they do today, but otherwise the 
pace of research in conventional acoustics had become slow indeed by 1950. 

That situation has been transformed in the last thirty years with the development 
of the subjects of aero- and hydro-acoustics. Acoustics has, naturally, continued to 
expand along many lines, but it now has again a branch which relies heavily on 
serious ideas in fluid mechanics, and, moreover, continues to  throw up research 
topics in fundamental fluid mechanics. The originator of aero- and hydro-acoustics 
was one of the founding associate editors of this journal, Sir James Lighthill, and the 
Jo.zimal itself must take some credit for the partial rehabilitation of acoustics as a 
branch of fluid mechanics through the publication of some 150 papers in this area, 
the great majority of these in the last few years. 

The aim of this article is to present six instances of the interaction between aero- 
acoustics and fluid mechanics in some of the most topical areas. All the examples dis- 
cussed concern, in one way or another, the interaction between vorticity, sound and 
solid sharp-edged surfaces in high-Reynolds-number unsteady flows, topics far re- 
moved from classical structural acoustics. It would have been quite possible to have 
discussed a number of other topics which would, individually, equally well illustrate 
the strong position of modern acoustics in fluid mechanics; examples which I con- 
sidered were nonlinear waves in bubbly liquids, the instability of free shear layers 
(implicitly related to  most of the topics in khis article), the acoustic field known as 
‘ shock-associated noise ’ arising frcm the interaction between shear-layer turbulence 
and the cellular steady wave pattern in the exhaust of an underexpanded supersonic 
jet, the response of airfoils and turbomachinery cascades to incident vortical, entropic 
and acoustic disturbances, and others. I felt, however, that  i t  was important that the 
various topics have some fairly close relationship with each other, beyond illustrating 
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the interplay between acoustics and fluid mechanics. The six examples selected do 
represent both this interplay and the current state of aeroacoustics rather well. There 
is, of course, no attempt here to provide anything more than an ephemeral (and in- 
completely documented) view of our understanding of these fascinating fluid-mecha- 
nical phenomena. 

2. Generation of sound by vorticity 
The aim of aeroacoustic theory is firstly to  provide a reliable means of predicting 

as many features as possible of the sound generated by turbulent flow from the crudest 
specification of that  flow (the original aim), and secondly (and mere recently), to  
provide a framework for the solution of model problems involving the interaction 
between simple vortical and compressible motions in order that  particular mechanisms 
can be explored in detail. Lighthill (1952) was concerned with the former, and he set 
the pattern for most subsequent theories in formulating an analogy between the 
actual situation (e.g. the generation of broadband noise by a high-speed jet exhaust) 
and a simple classical acoustic situation on which the turbulent flow acts as an ex- 
ternally imposed source distribution with a particular structure. Such analogies have 
also been used extensively to  solve model problems, because the direct calculation of 
unsteady, vortical, compressible flows can only be accomplished in a very few cases 
(perhaps the most notable to  date involving the Kelvin vortex of finite cross-section, 
neutrally stable in strictly incompressible flow, unstable, despite radiation damping, 
in weakly compressible flow; see Broadbent & Moore 1979). 

Lighthill’s theory has been by far the most successful and versatile. It has served as 
the basis for innumerable schemes for the prediction of mixing noise from jet aero- 
engines and of boundary-layer and wake noise from underwater vehicles, and at the 
other extreme has often featured in theories of the heating (by dissipation of the energy 
of aerodynamically generated acoustic waves) of the solar corona. Although devised 
in the first instance for subsonic flows, i t  has been extended to cover the entire Mach 
number range of engineering interest, and has been generalized to include the effects 
of solid boundaries, either a t  rest or in arbitrary motion, those of convective amplifi- 
cation and fluid shielding by the mean flow, and the phenomena associated with in- 
homogeneities in the turbulence - such as temperature inhomogeneities, bubbles in 
liquids and dust particles in gases. For reviews of these, and many other aspects, the 
reader is referred to  Ffowcs Williams (1969, 1977), Crighton (1975) and Goldstein 
(1  976). Lighthill’s theory has also been used to  calculate the radiation from certain 
unsteady flows for which an exact solution is known in the incompressible limit, but 
for these purposes it is neither the most efficient nor the most illuminating procedure. 

Consider an unsteady flow confined to  a bounded region: we wish to predict the 
sound field radiated to  large distances outside the flow. An acoustic analogy for this 
problem consists of a forced wave equation 

(where a,, is the sound speed in the quiescent fluid, h a field variable which in the 
distant field can be identified with the pressure perturbation) together with a speci- 
fication of the source q in terms of quantities which can be estima,ted independently 
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of the sound field from a knowledge of the unsteady flow. All choices for h and q 
consistent with the equations of mass, momentum and energy conservation must lead 
to the same sound field if all the flow variables are known exactly; the advantage of 
one choice over another is then entirely dependent on the details of the particular 
problem. For example, if we have only a crude specification (in terms of intensities 
and length scales, say) of a turbulent flow, Lighthill’s choice should be followed, as 
this is designed to eliminate the gross errors that can easily arise from incomplete 
knowledge of the flow. If, on the other hand, we consider low-Mach-number flows 
with concentrated vorticity known in analytical form, then an appropriate choice 
would involve a q related as closely as possible to the vorticity alone. 

Infinitely many choices of acoustic analogy are, of course, possible. Three simple 
analogies of type (2.1) have proved popular. They are due to Lighthill (1952), Powell 
(1964) (greatly extended by Howe (1975)) and Ribner (1962)) and have, respectively, 

p = a2qj/axiaxj, (2.2) 

q = podivL 
and 

in which 

i a 2 p ( o )  
4 = - - -  a$ at2 ’ 

q, = puiui + p i ,  - a$p& 

defines Lighthill’s quadrupole stress tensor in terms of velocity u, stress pii and 
density p, 

is the Lamb vector’of the Powell-Howe theory, with w the vorticity, T the tempera- 

L = w Au-TgradX (2.6) 

(2.7) 

defines Ribner’s pseudo-sound pressure ~ ( 0 ) .  The number of space derivatives present 
in q determines the integral-vanishing properties of the source, and hence its multi- 
pole structure; thus (2.2)-(2.4) represent, respectively, quadrupole, dipole and mono- 
pole source distributions. A point multipole (or one in which the constituents are 
separated by a scale 1 small compared with the radiated wavelength A )  has a radiation 
efficiency and directivity pattern quite different from those of the individual simple 
sources which comprise it, and therefore the three approaches can be reconciled only 
when the integrated effect of the whole distribution is calculated from the Green’s 
function solution 

h(x, t )  = G(x, t ;  Y, 7) d Y ,  7 )  d3Yd7 (2.8) s 
to (2.1). If the distribution is known in sufficient detail that reconciliation is merely 
a matter of integration and algebra; if it is not, the use of an approximate p(O) in an 
acoustically efficient monopole representation like (2.4) will lead to a much larger 
estimate (by a factor O(A/Z)) for h than if (2.3) were approximated, and that in turn 
to a comparable overestimate relative to that resulting from approximation to Light- 
hill’s qnadrupole !&.. This sensitivity of some representations to fine detail of the 
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source is heightened by. the very different behaviour of the q's far from the flow region; 
decreases like  XI-^ if incompressible values are used, L vanishes identically outside 

the region containing vorticity, and p(O) decreases like Thus the total instan- 
taneous source strength[q(y, 7) d3yvanishes for (2.2) and (2.3), but is infinite for (2.4)! 

Now the ability to estimate instantaneous source integrals is important, for in the 
retarded-potential solution to (2.1) 

one does nct usually know enough about the variations in q with retarded-time 
t - Jx - yl/uo (when y varies over a typical coherent turbulence source, or 'eddy') to 
predict the correct value between zero and infinity. If we think of the eddy as having 
a length scale I and velocity scale u, then the maximum retarded-time difference is 
of order Z/uo, a time far shorter (at low Mach numbers m = u/uo) than the time-scale 
l/u over which changes can usually be assessed in turbulent flow. We therefore need 
a formulation which is insensitive to retarded-time differences - which (2.4) is evi- 
dently not, as was forcefully pointed out by Lighthill (1963) and Crow (1970) .  

Lighthill's form, with its quadrupole structure, takes explicitly into account the 
twofold integral-vanishing property that all aeroacoustic sources must have, because 
of mass and momentum conservation in regions free of boundaries, and leads to a 
far-field form 

(2.iO) 

in which retarded-time variations can be safely neglected for m < 1, yielding finite, 
and usually non-zero, estimates in the form of valuable scaling laws based on crude 
dimensional representations of Tii. This completely accounts for the fact that such a 
simple acoustic analogy has proved so robust, and capable of revealing so many 
features of the sound field; see, for example, the demonstration by Ffowcs Williams 
(1969) that Lighthill's q transforms naturally into a dipole or even monopole form 
when the flow contains inhomogeneities in composition or heat content, 

Dimensional analysis of (2.10) leads readily to the estimate 

(2 .11)  

for the acoustic power output of uncorrelated eddies, each of volume P, distributed 
throughout a volume V ,  in which the first term (pou2) (13 )  (u/l)  represents the rate of 
supply of energy to an eddy of scale 1 to maintain its motion a t  speed u, the second 
represents the number of eddies in V and the third expresses the quadrupole ineffi- 
ciency of aeroacoustic sources a t  low Mach number. Equation (2.11) is equivalent to 
the celebrated ' U8-law' for the increase in acoustic power with jet exhaust speed U .  
The many further results of this theory do not concern us here, nor any of the attempts 
to 'improve' upon (2.11) in the sense of finding the numerical coefficient involved. 
I n  the first place there is no reason to expect such a coefficient to be universal, because 
sound generation involves the low- rather than high-wavenumber components of 
turbulence, and hence there can be no such thing as a formula for 'the acoustic power 
output of unit volume of turbuIence '. And in the second, even for a given turbulent 
shear flow, the value of the constant rests upon details of the flow which have not yet 



2 66 D. G .  Crighton 

been measured, nor are ever likely to be; specifically, on the integral, first over spatial 
separation and then over the turbulent volume, of the fourth time derivative of the 
space-time covariance of the Reynolds stresses (81 terms), an experimental task of 
great difficulty and effort, and of almost no value whatever. Jet  noise prediction 
schemes commonly postulate a functional form for the said covariance, with a few 
disposable parameters taken from shear flow measurements or adjusted to fit the 
noise prediction to measured data, but, principally because of the fourth (i.e. quad- 
rupole) derivative, the numerical coefficient is indeed sensitive to the functional form 
assumed. Despite all this, however, the scaling laws like (2.1 1) are already of consider- 
able value as they stand, particularly in underwater acoustics. There m never exceeds 

so that an incorrect source modelling leading to, say, a dipole source, would lead 
to an overestimate of the intensity by a factor m-2 N lo6 - which is more likely to  
be a serious error than any arising from inadequate knowledge of the numerical 
coefficients involved. Further, although derived on the basis of low-Mach-number 
asymptotics, the scaling law (2.11) holds, in the case of jet noise from carefully con- 
trolled niodel rigs, over the wide range 0.3 5 U 5 2ao of exhaust velocities U .  

Two different ‘analogies’ have been proposed to deal with high Mach numbers. 
These are due to Phillips (1960) and Lilley (1972) (see Goldstein 1976). Phillips’ 
approach involves a convected wave equation 

(2.12) 

which has the merit of extracting density from the Lighthill source (arguably the 
most significant manifestation of compressibility) and leaving a source specified solely 
in terms of velocities. Lilley objected to (2.12) on the grounds that as fluctuation 
amplitudes become small all source terms on the right should vanish at least quadratic- 
ally so that the equation should then describe freely propagating disturbances to the 
mean shear flow. That property (in no way mandatory) is not possessed by Phillips’ 
equation, which contains a linear ‘shear refraction’ term on the right. Lilley re-wrote 
Phillips’ equation in the form 

= terms at least quadratic in fluctuations. (2.13) 

The left-hand side of (2.13) is, of course, just the compressible form of the Rayleigh 
operator determining the instability properties of the mean flow - which has led to 
considerable controversy as to the role which should be played in the theory by these 
instabilities. More basic than this, however, is the point that if one is interested in 
finding the sound field generated by turbulent perturbations to a mean flow it is 
simply not possible to derive Lilley’s equation by any rational scaling and expansion 
method, because the time scales involved do not permit the use of the mean velocity 
and temperature profiles on the left of (2.13) (see Crighton 1979). A further difficulty 
is that equations such as (2.12) and (2.13) are not easily solved in analytical form, 
while if the mean profile is used in (2.13) some rather artificial sources must be included 
on the right to account for the fact that throughout the brief time a sound wave 
takes to traverse a shear layer the shear-layer profile does not remotely resemble 
the mean. All in all, although (2.12) and (2.13) constitute exact analogies, they are 
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taken with respect to a reference situation (left-hand side equal to zero) of questionable 
relevance and, in my opinion, have yet to produce a result of widely accepted validity 
which has not been obtained more explicitly from generalizations of Lighthill’s theory 
(e.g. those due to Dowling et al. 1978). 

At low Mach numbers Lighthill proposed the approximation l&. M povivi, where v 
is the velocity field of incompressible flow. I n  that limit, Lighthill’s theory amounts 
to a theory of sound generation by vorticity, for v can be defined entirely in terms of 
o = curl v by the Biot-Sa,vart law 

(2.14) 

However, when one thinks of the low-Mach-number situation as comprising an 
inner vortical core of scale I and an outer compressible acoustic mantle of scale 
h N Zm-l, the formal connection established between h and o seems rather remote. 
A closer connection was provided by Powell, who wrote 

(2.15) 

and argued that (as can be confirmed from Crow’s (1970) analysis) the second term 
on the right gives rise to a much smaller sound field than the first - and hence equation 
(2.3), if entropy gradients can be neglected. The Lamb vectorp,(o A v) can be regarded 
as the Kutta-Joukowski force on a material line element; momentum conservation 
demands that these lift forces be arranged in cancelling pairs, so that Powell’s vortex 
dipole actually has a hidden quadrupole structure which must be explicitly brought 
out in applications to ill-defined sources in order to avoid a serious overestimate of 
the sound. This makes it less convenient than Lighthill’s form for most general pur- 
poses, though it is much more convenient for the solution of model problems, where 
most exact solutions for the incompressible field v involve vorticity concentrations 
in lines, planes or rings. Then one can utilize the delta-function behaviour of o 
effectively, without needing approximations to the source function - except that the 
value of v to be used in (v A o) is taken as the velocity of the vortex filament, etc., 
ignoring the infinite contribution to v which is self-induced by the local vorticity. 

A significant generalization of Powell’s approach was achieved by Howe (1975) 
who observed that an analogy could be framed in which the quiescent acoustic medium 
of the analogies represented by (2.1) could be replaced by a steady irrotational mean 
flow, The propagation operator for irrotational perturbations to such a flow is 

(2.16) 

say, where a is the local sound speed, D/Dt  the derivative following the total velocity 
u.  In  the presence of vorticity, and entropy gradients, there is no potential on which 2 
can act; Howe showed that the stagnation enthalpy 

(2.17) 

is the natural variable to use in place of a#/at  (and corresponding to h of (2.1)) and 
that  then 

9 B  = div (w A u -TgradS}-- - .(w A u - TgradS}. (2.18) 
1 Du 

a2 Ut 
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This equation contains Powell’s result in the low-Mach-number, uniform entropy 
limit, includes thermodynamic inhomogeneity sources in the Lamb dipole, and 
includes all effects associated with a mean flow as long as it is a potential mean flow 
(and not the transversely sheared flows attacked by the Lilley formulation). As such 
it is more suited to internal duct and engine flows than external jet flows, but it has 
been applied by Howe himself to a great variety of problems involving sound genera- 
tion by vortical and entropic concentrations propagating in inhomogeneous mean 
flows. As examples we quote his (1975) nonlinear theory of vortex shedding and sound 
production in flute-like instruments, the generation of pressure waves by the inter- 
action of vorticity waves propagating on swirling duct flow with a contraction or 
nozzle (Howe & Liu 1977) and the theory of shock-associated noise produced when 
shear-layer vorticity interacts with the steady cellular pattern in a supersonic jet 
exhaust (Howe & Ffowcs Williams 1978). 

The Powell-Howe theory is the nearest we have come to relating sound sources to  
the vorticity - where by ‘sources’ we mean the q on the right side of a differential 
acoustic analogy like (2.1). However, the sources are not locally related to the vorticity, 
and in fact are non-locally, nonlinearly related to the vorticity through (2.3), (2.6) 
and (2.14). The only means yet found of relating the sound field linearly to the vorticity 
is due to Mohring (1978), who not only transformed the expression for the source q 
using the nonlinear Helmholtz vortex laws, but transformed the Green’s function 
with which the source is convolved. In  the Green’s function solution 

to the Powell-Howe wave equation we integrate by parts, giving 

define a vector Green’s function by 

- (curl G)i 
aG 
ayi 
_ -  

and again integrate by parts to give 

h(x, t )  = po GJcurl, L)id3yd7 s 
(2.19) 

after a further integration by parts and use of the dependence of both G and G on 
( t  - 7 )  only. Note that, whereas L involves both vorticity and entropy gradient terms, 
(2.19) expresses the field entirely in terms of o, use having been made of Helmholtz’ 
equation in the form a o / a t  -I- curl L = 0. 

The price paid for the attractive relation (2.19) is twofold. First, since Gi is not the 
usual retarded-potential scalar Green’s fiinction, (2.19) does not have the properties 

a 
= - Po 3 s Gi ( x ,  t ; Y , 7 )  wi (Y 9 7) d3Y d7 
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we intuitively expect in a source-sound relation. Second, as Mohring remarks, the 
principal difficulty with (2.19) is that in general the vector G does not exist, for the 
integrability condition for the set curl G = grad G is V2G = 0, which is not usually 
satisfied. Indeed, when G is symmetric in its arguments it satisfies 

but Mohring notes that the delta functions vanish in the usual case where x is in the 
far field and y in the source region, while the first term on the right is presumably 
small at low Mach numbers - so that then the requisite G might almost exist! Mohring 
actually gives several exampIes in which G can be found; in one G is harmonic in Y 
so that there is no difficulty (and this always happens if y lies within a wavelength 
or so of a scattering body), while in another Vg G + 0 but it is still possible nonetheless 
to find a G with the right integral properties in conjunction with the Lamb vector L. 
He also givesasuccinct representation of the radiated field of any number of compact 
vorticity blobs, involving quantities like the vortex impulse and vortex energy familiar 
in vortex dynamics, and an expression for the intensity of turbulence-generated noise 
which is linear in the vorticity covariance, and hence linear in the velocity covariance, 
in contrast to the Lighthill expression which involves the mean product of four velo- 
cities (and hence the square of the velocity covariance if a quasi-Gaussian hypothesis 
is invoked). 

Because G always exists when G is harmonic in y it is natural (though perhaps only 
as a formal exercise) to recast Mohring’s formulation in terms of matched expansions 
(for m = ./ao -+ 0). That is, Mohring’s method is used for incompressible flow to 
relate the pressure fluctuation linearly to the vorticity of a compact flow, and this 
fluctuation is then matched to an outer compressible wave field, an approach recently 
used in many applications by Obermeier (1979). Matching procedures of this kind 
(and, quite generally, for low-frequency acoustic problems) are not altogether straight- 
forward, however, as shown by the penetrating analysis of Crow (1970), and the use 
of (2.19) directly is preferable whenever possible. 

Many further applications will doubtless be found for the inhomogeneous wave 
equations mentioned here, and also for the very different representation (2.19). Each 
in its way represents a theory of sound generation by vorticity; the Lighthill theory is 
quite the most successful in leading to general results, the Powell-Howe version in 
enabling model problems to be solved. Neither involves the vorticity as simply and 
explicitly as one might hope, but the prospect of finding a preferable differential 
analogy seems Sliril. If one enlarges the idea of an analogy to cover expressions like 
(2.19) then the search for an analogy couched in terms of vorticity alone is over; but 
we have yet to discover (through study of the purely acoustic problem defining G )  
the physical situation to which that analogy refers! 

3. Generation of vorticity by sound 
Sound may be generated by vorticity either in free space through the action of the 

nonlinear terms in the Navier-Stokes equations or through the linear coupling which 
takes place when these fields are together required to satisfy boundary conditions 
demanded by, say, the presence of an inhomogeneous surface. By the same token, 
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vorticity can be generated by sound in either of these situations. I n  free space the 
process involved is that  of stretching of fine-scale vortex lines by the weak large-scale 
sound field. This process - the stretching of vorticity by its own sound field - has 
not yet been studied, and no claim has been entered for its importance in terrestrial 
applications, though it could conceivably be significant in astrophysical situations, 
where the levels of aerodynamically generated sound might be large enough to  produce 
a significant back-reaction on the flow responsible for them. 

The second possibility, where vorticity is produced by the interaction of soand 
with a solid surface, leading to  a significant attenuation of the sound if there is a 
mean flow to convect the vorticity away, has been the subject of much recent work, 
although Bechert ( 1980) gives examples of practical noise suppression devices which 
(perhaps unwittingly) rely on this mechanism, going back as far as 1916. The effect 
was first noticed in aeroacoustics in studies of high-Reynolds-number jet reponse to 
low-amplitude acoustic waves propagating down the jet tailpipe, and it is in that 
context that  the most spectacular results are found. It was originally thought (Crow 
1972; Crigliton 1975) that the far-field sound a t  the frequency of an incident forcing 
tone could be significantly amplified by the acoustic field associated with instability 
waves triggered on the jet by the forcing, provided the forcing freqlxency lay within 
the instability band. This now appears to  be the case only when the jet velocity is 
high enough that the instability phase speed is supersonic relative to the ambient 
medium, in which case relatively intense ‘Mach wave radiation’ is generated by the 
instability as it amplifies and then decays downstream (Tam & Morris 1980). Moore 
(1977a) showed experimentally that, a t  subsonic mean flow Mach numbers, no signifi- 
cant amplification of the far-field sound existed (despite very large amplifications, at 
the forcing frequency, of the fluctuations within the jet flow and the near field). This 
was done by measuring the power incident upon the nozzle exit from within the tail- 
pipe, that  reflected back down the tailpipe, and the far-field radiated power; the 
difference between the first two of these - i.e. the net power transmitted along the 
tailpipe - is denoted by W,, the third by W,?. For a range of subsonic Nach numbers, 
and for Helmholtz numbers k, R (k, = acoustic wavenumber a t  frequency w ,  R = tail- 
pipe exit radius) greater than about 1.5, the ratio W,/W, was found to be close to  
unity, whereas a t  lower Helmholtz numbers there was a significant imbalance, most 
of the incident power appearing neither in the far field, nor in the reflected waves. 

A definitive set of measurements was then compiled by Bechert et al. (1977)) who 
showed that the attenuation -A, where 

A = 101og,, (WR/W,), 

could be extremely large, as much as 20 dB at k, R = 0.1 and a Mach number of 0.3! 
Howe (1979a) next provided a detailed theoretical prediction of these effects, following 
Munt’s (1977) earlier prediction of the far-field directivity pattern produced when a 
tailpipe acoustic mode is diffracted and refracted out of the exit plane of a semi- 
infinite circular duct carrying uniform subsonic jet flow. Munt had been extremely 
successful in predicting the directivity, a t  any rate for low to moderate frequencies 
and for cold jets, and Howe’s calculation of the attenuation is equally successful. 
Simpler versions of this theory were subsequently derived by Howe (1980a), Cargill 
(1979) and Bechert (1980), each taking a low-Strouhal-number limit but with slightly 
different accuracy in regard to the Mach number M .  Howe (1979a) assumes low 
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acoustic power conservation in absence of flow. ---, equation (3.2); 0,  measured values. ( a )  
iM = 0.1, (b )  M = 0.3, (c) ill = 0.5, (d) M = 0.7.  (From Bechert 1980 J .  Sound Vih. 70, p. 389, 
Copyright by Academic Press Inc. (London) Ltd.) 

Helmholtz number, and further neglects M 2  compared with unity, but otherwise his 
theory relies on an exact solution of the jet/tailpipe interaction problem in which, 
as in Munt's work, the satisfaction of a Kutta condition on the unsteady flow a t  the 
duct lip is essential (see 5 4 below). A simplified version of this theory (Howe 1980a) 
ignores all terms O ( M )  relative to unity, with the result 

Bechert's (1980) theory does not solve a boundary-value problem, but assumes in- 
stead that the sound field can be regarded as generated by monopole and dipole 
sources on the exit plane, the two being coupled by the postulate that  in the presence 
of mean flow theopen-end pressurereflection coefficient remains - 1,  as in the absence 
of flow. Cargill (1979) shows that postulate to  be equivalent to  the application of a 
Kutta  condition. He also shows that for low Helmholtz numbers andJinite Mach 
numbers the sources considered by Bechert should be supplemented by certain quad- 
rupoles in the jet flow, so that the ilP term in Bechert's (1980) equation (15), 

is incorrect and should be replaced by 

(3.2) 
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I n  figure 1 we reproduce figure 3 of Bechert, (1980)  which gives a comparison of 
( 3 . 2 )  with measurement for ill = 0.1, 0 - 3 ,  0.5 and 0 .7 .  The agreemenb is good, except 
at the higher Mach numbers where the incorrect M 2  term in ( 3 . 2 )  must be significant. 
The effect of the change represented by Cargill’s ( 3 . 3 )  above is to raise the curves in 
this figure by 0.1 dB, 0.9 dB, 2.8 dB and 7 - 2  dB, uniformly in (k,R),  for the four 
respective values of N .  At Jl = 0.5 and 0 .7 ,  and k,R 6 0.6, this leads to  a much 
better prediction of the data than that offered by ( 3 . 1 )  or ( 3 . 2 ) .  

The Kutta condition, of finite velocities a t  the duct lip, will be discussed further in 
8 4; i t  serves to fix the rate of vorticity shedding from the lip into the downstream 
shear layers in terms of the incident tailpipe wave amplitude, and the kinetic energy 
flux associated with these vortical fluctuations accounts precisely for the ‘attenuation ’ 
experienced by the incident wave. I n  the vortex sheet jet models the vortical fluctua- 
tions take the form of spatially amplifying instability waves; however, this unbounded 
exponential amplification is totally irrelevant to the energy conversion process, which 
is a purely local one, at the lip. At the low frequencies of interest here the growth 
rates of the instabilities are very low, and Howe ( 1 9 7 9 a )  has given an alternative 
modelling in which finite shear-layer thickness leads only to  neutral convection of the 
vorticity with very little change in the acoustic attenuation. 

I n  Munt’s analysis (and in several papers preceding it) emphasis was placed on the 
need for a causal solution in time-harmonic problems where spatial instability is 
possible. When doubly infinite shear-layer problems are considered, the causality 
requirement seems to  lead to  a unique solution (one unbounded downstream); in 
practice, however, shear layers are shed from splitter plates or nozzles, and in such 
cases causality does not lead to  a unique solution. Crighton & Leppington (1974) 
showed that, for the two-dimensional flow past an upstream splitter plate the solution 
satisfying a Kutta condition a t  the trailing edge was automatically causal, but that 
there were also causal solutions with singular velocity fields at the edge. The same is 
true of the jet-tailpipe problem; the properties of the Kutta condition solution 
(necessarily causal) have just been described, but there are other causal solutions, 
including one in which there is no vorticity shedding from the pipe lip. Then (Cargill 
1979) the pressure reflection coefficient magnitude becomes ( 1 + M)/( 1 - M )  at  low 
k,  R and almost all the incidant energy is then reflected back down the tailpipe, only 
a small fraction, O(kgR2), radiating to  the far field. 

The causality requirement may still turn out to  be crucial if (as appears to be the 
case for hot jets) several complex instability wavenumbers appear to correspond to 
a given frequency (some of which might, under the causality requirement, turn out 
to  be spurious and non-physical), but for the cold flow problems discussed here it 
appears that  for trailing-edge flows the overriding condition relates to the rate of 
vorticity shedding a t  the edge or lip, as expressed in the Kutta condition. 

Vortex shedding also has an interesting effect on the magnitude of the open-end 
pressure reflection coefficient; for low k, R this magnitude is 1 ,  and it then rises above 
1,  reaches a maximum and falls to  zero as Ic,R -+ 00, while remaining everywhere 
larger than the value for zero mean flow. The maximum is reached for values of M 
and k,R which give the Strouhal number S t  ( =  wR/nU) a value around 0.5 - close to  
the ‘preferred jet column instability mode’ Strouhal number (see §§ 6, 7) .  This beha- 
viour cannot be predicted by theories like those leading to the (koB)2 variation of 
(3.1)-(  3 .3 ) ;  either numerical evaluation of Munt’s theory is needed (Munt 1981)) or 
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analysis to higher order in k,R (Cargill 1981). The two approaches agree very closely 
with each other, and reproduce the experimental results reasonably well. This further 
confirms the general understanding of acoustic-hydrodynamic energy conversion a t  
a jet pipe exit; in particular, approximate theories which ignore the vortex shedding 
and jet flow instabilities induced by the Kutta condition fail completely to describe 
the reflection coefficient behaviour with k, R in the presence of flow (see references 
cited above). 

The low-frequency attenuation may occur wherever acoustic waves and mean flows 
are coupled at a trailing edge, from which vorticity shedding can take place a t  the 
expense of the acoustic input. The mean flows do not have to be different on the two 
sides of the splitter plate or duct, nor do the flows have to be grazing flows. For example, 
Howe (1980b,  c )  has examined the reflection and transmission of sound waves by a 
plate perforated with either two-dimensional slits or circular apertures, with the 
same grazing flow on both sides, and also ( 1  979 b )  with a bias flow normal to the plate. 
I n  each case the trailing-edge velocities are required to be finite (which makes for an 
interesting problem for circular apertures in a grazing flow, with the Kutta condition 
imposed only on the upstream semicircle) while those a t  leading edges are allowed 
to be infinite in the usual inverse-square-root fashion (though see 8 5 below). Sound 
generation by vorticity does of course occur when the vorticity fluctuations in an 
aperture interact with the leading edge of the next section of plate, but this is taken 
into account in the calculation and the net result is always an attenuation of sound by 
the screen. A typical result (8 4 of Howe 1980 b )  is the following expression for the net 
power loss per unit area, for waves normally incident on a screen with slit perforations, 
a t  low aperture Strouhal number in the presence of grazing flow a t  Mach number M :  

( + ~ a ) ~  + M 2  
(4j.a + M)' ' A =  (3.4) 

with CT the open-area ratio. This has a minimum value of 4, corresponding to an 
attenuation of 3 dB, a t  M = &ma. Thus the attenuation here is much less dramatic 
than in the jet exhaust problem (where there is no re-conversion of vortical energy 
into sound), but much larger cumulative attenuation is possible for a duct mode 
making many interactions with perforated walls. 

Much further discussion of this mechanism is given by Howe (1980a)  and Bechert 
(1980) .  Howe gives a general result for the rate ITT a t  which energy is lost by an 
acoustic wave (with particle velocity u) to a vortical field with vorticity w, o = curl v, 
namely 

IT,, = po(O A V). Ud3X (3.5) s 
(this valid for low Mach numbers) and suggests that trailing-edge interactions always 
lead to  an attenuation of the incident acoustic wave. Rienstra (1981)  shows that this 
is not always true a t  finite Mach numbers, even for the simple case of plane waves 
impinging on a flat plate trailing edge with the same subsonic flow on both sides; for 
certain ranges of Mach number and propagation direction the power flux out of the 
downstream wake is positive, implying that the interactions of the acoustic and 
vortical disturbances with the edge generate more sound than is absorbed by the 
Bechert-Howe mechanism. 
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4. The Kutta condition in unsteady trailing-edge flows 
Continuous solutions for subsonic inviscid flow around a body with sharp edges are 

invariably singular a t  those edges, the velocity there becoming infinite as some inverse 
fractional power of distance, 1x1, the power depending on the wedge angle a t  the 
apex. For flat plate problems the least singular solution usually has a \ X I - *  singularity. 
If there is no mean flow, the pressure jump Ap across the plate will then vanish like 
xi, but will become infinite like x-* in the presence of mean flow. 

If the solutions are to be finite a t  any of the edges present in the flow field, then 
those solutions must necessarily be discontinuous across some surface extending from 
the edge to infinity-or must violate the radiation condition a t  infinity. Such a 
surface of discontinuity must be a vortex sheet, across which the tangential velocities 
jump, but across which the particle displacements and pressure are continuous. If 
there is no mean flow, as there frequently is not in classical acoustic diffraction prob- 
lems, then there is no preferred direction along which a vortex sheet could emanate 
from an edge, and no mechanism in linear theory for the transport of vorticity away 
from the solid surface and onto the vortex sheet. One then just has to accept the 
continuous, singular diffraction fields, and hope that the least singular of them will 
actually be consistent with an acceptable structure on some ‘inner’ length scale 
provided either by linear viscous effects or, in inviscid flow, by smooth fine-scale 
geometry of the edge. This has actually been shown to be the case, by Alblas (1957) 
and Crighton & Leppington (1973), respectively. Although not couched in this lan- 
guage, Alblas’ results can be interpreted as showing that the least singular continuous 
solution can be regarded as an ‘outer’ solution which can be matched to an inner 
incompressible flow governed by the linear time-dependent Stokes equations, the 
inner region being a Stokes layer of the usual thickness, ( v /w)* ,  all round the body. 
The velocity components in the Stokes layer vanish a t  the edge, and become large like 
\ X I - *  as one recedes from the edge into the outer region. In  the case of inviscid flow 
with smooth fine-scale geometry the situation is even simpler; the inner region scales 
on a length characteristic of that geometry, and in it the flow is nonlinear but governed 
by analytic solutions of Laplace’s equation, these again matching the singular velo- 
cities on the outer scale. 

I n  the presence of mean flow the inner edge problem has far more structure, and 
can only be understood with the aid of Stewartson’s (1969) triple-deck theory. Consider, 
for definiteness, the flow past the trailing edge of a splitter plate extending to infinity 
upstream. With the same mean flow on both sides of the plate, the vortex sheet 
occupies the downstream extension of the plate, and the perturbation vorticity is 
concentrated on this surface and convected as a frozen pattern with the mean flow 
speed. The time-dependent potential flow equations, together with pressure and dis- 
placement continuity requirements across the vortex sheet, have, at each frequency 
w ,  an eigensolution exp ( - iwt) $ E ( ~ )  satisfying a radiation condition everywhere at 
infinity and with \ X I - *  velocity and pressure singularities at the edge. Given, on the 
other hand, some external excitation in the form of an acoustic source, an incident 
gust, or a plate oscillation, for example, a continuous solution to the forced problem 
can be found, also with \ X I - $  singularities, and radiating at infinity, A ‘Kutta con- 
dition ’ is said to be satisfied when that multiple of the eigensolution is added to the 
continuous solution which removes the singularities from velocity and pressure, and 
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this then fixes the strength of the vorticity wave convected into the ‘wake’. I n  the 
absence of a Kutta condition, the general solution is not uniquely determined in 
terms of the forcing, and is both singular a t  the edge and discontinuous across the 
wake, so that i t  is natural to  argue that physical effects so far neglected will in fact 
single out either the continuous or the nan-singular solution. These two solutions 
differ radically in their surface loading and in their acoustic far field, and the matter 
of which is selected, as a function of Reynolds, Mach and Strouhal numbers and of 
dimensionless forcing amplitude, mean flow incidence, etc., is therefore of crucial 
importance in unsteady aerodynamics and aeroacoustics. 

The case of non-zero, but different, mean flows on the two sides of the plate is 
similar, except that  now the continuation of the plate is a mean vortex sheet, and 
perturbations to it now amplify in space as Helmholtz instability waves. At each 
frequency, the general solution will have a vortex sheet displacement exp ( - iwt) ~ ( x )  
behaving like & near the edge, with Ix(-) velocity and pressure singularities in both 
streams, and for a particular choice of eigenfunction one can obtain ~ ( x )  - x% with 
velocities and pressures finite a t  the edge. 

When one of the mean flows is zero, as for a jet exhausting into static fluid, a third 
type of edge behaviour is possible, as argued by Orszag & Crow (1970). They discussed 
only the eigenfunction, which itself can only be made to satisfy a Kutta condition if 
the pressure in the moving fluid increases like IxI* toward upstream infinity. When 
considering the no-Kutta-condition solution, they argued that it would not be realistic 
t o  allow the vortex sheet to  bend down into the static fluid, for in a real fluid this would 
immediately produce a flow separation from the plate upstream of the edge - whereas 
the situation in mind is one in which any separation is confined to the immediate 
vicinity of the edge. The downward flapping can be avoided by adding a steady flow 
with parabolic vortex sheet displacement of appropriate magnitude (such a displaced 
sheet sustaining no pressure jump in inviscid theory). This solution, involving a 
rectified, rather than full, Kutta condition, still has singularities a t  the edge in the 
moving fluid, but one can argue that these singularities should actually lie inside the 
steady parabola, and that they have been shifted into the flow domain by the 
linearization. 

Experimental work on the Kutta condition is generally both confused and con- 
fusing. It is often claimed that great delicacy is called for in such experiments, in 
order to  resolve the flow structure very close to the edge. Although such studies are 
of great intrinsic interest, they seem to me frequently t o  imply a complete miscon- 
ception as to the nature of the Kutta condition and what measurements are needed 
in order to validate it. Before one can even talk about a Kutta condition one must 
have in mind a situation in which both mean and unsteady flows remain unseparated 
up to some small viscous length from the edge, so that an outer modelling of the flow 
by potential regions and a thin downstream wake is appropriate. The Kutta condition 
then asserts that  the potential flow solution will behave in a certain manner as the 
edge is approached on length scales small compared with the outer scale, but still 
large compared with any relevant viscous lengths. This point, though perhaps obvious, 
has been misunderstood so many times that it is worth repeating; a knowledge of the 
inner viscous structure a t  the trailing edge does not necessarily clarify the Kutta 
condition issue, and spatial resolution very far below the inviscid length scale is not 
required in order to arrive a t  a condition applicable to the outer flow. 
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This matter is well exemplified by the experiments of Bechert & Pfizenmaier (1973, 
1 9 7 5 ~ ) )  which are of particular interest in aeroacoustics. The authors used a round jet 
emerging from a nozzle into static fluid to produce the mean shear layer, and perturbed 
the flow in a controlled manner by a loudspeaker in Lhe plenum chamber. This forced 
situation is one for which a Kutta condition can be imposed without any unphysical 
behaviour far upstream, and the intention was to  determine the form of the dividing 
streamline (i.e. the ‘vortex sheet’) close to  the nozzle exit. I n  the first series of experi- 
ments (1973)) velocities were measured in the jet stream by hot-wire anemometry, 
and pressures in the static fluid by a small microphone, the use of a phase reference 
allowing the velocity and vortex sheet displacement fields to be found as functions 
of space a t  a series of points in the phase. I n  terms of the boundary-layer momentum 
thickness 8, a t  exit, hot-wire measurements were made of the streamwise velocity as 
a function of the transverse co-ordinate y for downstream distances x as small as hee, 
while microphone measurements in the static fluid used values of x down to about 
38,. For values of x greater than these, but small on the hydrodynamic length scale, 
a clear picture was seen. 

First, the steady part of the dividing streamline did not have a non-zero value, as 
it would if the rectified Kutta condition were satisfied. Second, the hot-wire measure- 
ments showed no peak in the unsteady velocity in the neighbourhood of the edge. 
It was also shown that the transverse pressure gradient ap/ay vanished close to the 
edge; while this third point is consistent with a full Kutta condition, it is also consistent 
with a no-Kutta-condition solution, for in the still fluid the latter has pressure varying 
like 1 ~ 1 % .  It is not possible to  argue that the 1x18 variation for the full Kutta condition 
pressure fits the data better than 1x13, but the overall position is certainly that, for 
the particular parameter values chosen, the potential flows satisfied the full Kutta 
condition in these experiments. 

Dissatisfied with the resolution obtainable with the microphone in particular, 
Bechert & Pfizenmaier ( 1 9 7 5 ~ )  then went on to devise a much more sophisticated 
optical compensation technique for the direct measurement of the shape of the 
dividing streamline. What this technique involves is irrelevant here; it did, however, 
enable Bechert & Pfizenmaier to  measure the streamline deflection on almost the 
smallest viscous scales downstream of the nozzle edge a t  Reynolds numbers (based 
on diameter D )  U D l v  = lo4, 5 x lo4 and 105 and over a range of Strouhal numbers 
( f D / U )  from 0.4 to  2.2. A typical result (their figure 1 1 )  is reproduced here as figure 2. 
This figure, and all the others, shows the presence, very close to the edge, of a parabola- 
shaped portion of the deflection curve, to  which attention was drawn by Bechert & 
Pfizenmaier (italics on p. 142). This parabolic behaviour takes place, however, deep 
inside the viscous layers, must not be confused with the parabolic behaviour possible 
in the potential flow, and must not be interpreted - as i t  often has been - as implying 
that the potential flow does not satisfy a Kutta condition. 

A (to me) very convincing explanation of the Bechert & Pfizenmaier measurements 
throughout the viscous regions, and a substantial clarification of the Kutta condition, 
has recently been given by Daniels (1978). His work was the fourth contribution in 
a series of natural developments, beginning with Stewartson’s (1969) theory of triple- 
deck structure at a trailing edge in steady flow without incidence, proceeding (Brown 
& Stewartson 1970) to  the case of steady flow past an airfoil a t  incidence, thence to 
the airfoil in oscillating or plunging motion (Brown & Daniels 1975) and finally to 
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FIGURE 2. Optical compensation measurements of jet doflection envelope ~(z). Reo = lo5, 
various S t D .  0, 0 ,  correspond to forcing level of 118 dB; 0, n, 108 dB. (From Bechert & 
Pfizenmaier ( 1 9 7 5 4  .) 

the case of unsteady pertilrbations to different mean flows on either side of a splitter 
plate. Daniels takes the outer flow to be given by the full Kutta condition eigensolution 
of Orszag & Crow (1970), disregarding the fact that the pressure grows algebraically 
upstream on the grounds that only the local .=age behaviour is important (and would 
be similar if a forced problem were considered). Although the splitter plate is semi- 
infinite, it is assumed (realistically, from the point of view of experiments) that only 
a finite length I upstream from the edge is subject to the no-slip condition, thus giving 
a well-defined Blasius boundary layer just upstream of the edge in the moving fluid. 
This then defines a Reynolds number U l l v ,  written as E-*, with e < 1, in terms of which 
Daniels assumes that the dimensionless fluctuation amplitude in the outer flow is 
O(&) and that its reduced frequency wllU is 0(c2). When the prameters are ordered 
in this way, a consistent, though extremely complicated, viscous flow is deduced, 
illustrated in Daniels’ own figure 1 which is reproduced here as figure 3. The con- 
sistency of the scheme depicted depends on the construction (or a t  least existence) 
and matching of solutions in each of the many regions. Daniels achieved this for most 
of them, with the exception of region 11 (lower part of the triple deck), where the 
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unsteady nonlinear boundary-layer equations have to be solved (which Daniels does 
solve in closed forin in a smal1-amplitude limit, linearizing about a mean flow with 
uniform shear) and the very small region 15 where the full (but time-independent) 
Navier-Stokes equations apply with complicated matching conditions at  infinity. 

The inner layer of the triple deck has horizontal scale c3 and lateral scale c5, and, 
in terms of variables (x,,y,) which are 0(1) in this region, Daniels shows that the 
dividing streaniline from the edge has equation 

y2 = 0*895(x,/~(t))4, (4.1) 

where a ( t )  > 0 and, for small perturbation amplitudes, 

a(t)  = 1 +a cos wt, (4.2) 

with a < I .  This result does not, of course, apply in region 15, where we expect the 
full Navier-Stokes equations to  eliminate the infinite slope of (4.1) a t  the edge. 
Equation (4.1) does indeed show that in the neighbourhood of the edge the dividing 
streamline never turns down into the static fluid in y < 0 but, as Daniels remarks, 
that  is an inherent property of the viscous and nonlinear equations and is not a 
condition to  be imposed on the potential flow, although it does confirm the intuitive 
idea which 0rsza.g & Crow evidently felt should be embodied in the solution. The 
result shows, secondly, that  for small amplitudes the dividing streamline oscillates 
symmetrically on either side of the steady displacement 

yZ = 0*895xt, (4.3) 

which i t  is suggested corresponds to the ‘parabolic’ behaviour observed on the 
smallest scales by Beehert & Pfizenmaier (1975a). Naturally enough, as x2 --f co and 
we come out of the triple deck, the dividing streamline has precisely the y - xt 
rariation requircd to rnetcli the inner limit of the full Kutta condition solution. This 
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behaviour can be observed in figure 2 above, on scales much larger than those for the 
‘parabolic ’ or xj variation. 

Daniels also considers the viscous structure required by taking the no-Kut,ta- 
condition solution, and shows that, for amplitudes O(e8) as before, no viscous structure 
can be found, implying that at these amplitudes the flow must separate from the 
plate well upstream of the edge. If the amplitudes are muchsmaller, O(&*), aconsistent 
viscous structure can be found if a solution exists in the Navier-Stokes region 15, 
which is of extent O(e6) .  That existence question has not been settled, but it seems 
reasonable that in the absence of forcing a non-separated oscillatory flow could exist 
a t  sufficiently small amplitudes, and for that  the only possible representation of the 
outer flow would be the no-Kutta-condition solution. 

What if the amplitudes and frequencies are smaller or larger than those assumed by 
Daniels Z A complete answer has not been given, but one can perhaps anticipate that 
a t  lower amplitudes and/or frequencies the picture will remain essentially unchanged 
(eventually degenerating into perturbations of a steady flow, or into a quasi-steady 
flow). On the other hand, the multi-deck structure represents a delicate balance in 
which the adverse pressure gradients set up  by external mechanisms (incidence, or 
free-stream perturbations) and tending to produce flow separation can be offset by 
a favourable pressure gradient set up locally by the sudden change in boundary 
conditions a t  the trailing edge. This balance cannot be maintained a t  substantially 
larger amplitudes or frequencies, and it is likely then that flow separation will take 
place and the assumed potential flow modelling will be inadequate. 

I n  the case of equal mean flows a full Kutta condition can be imposed only when 
there is external forcing, and then with certain distinguished scalings on amplitude 
and frequency it can be shown that the solution under that condition can be matched 
to  an acceptable inner viscous flow. (See Brown & Daniels (1975) for excitation by 
airfoil oscillation, Rienstra (1981) for that  due to  an acoustic source. Rienstra also 
shows that the sound field diffracted by the airfoil has directivity properties strongly 
dependent on the trailing-edge condition, and claims that these features are to  be seen 
in the diffracted field visualizations reported by Heavens (1978).) For the no-Kutta- 
condition solution, Daniels casts some doubt on the existence of an acceptable viscous 
substructure, a point which needs to be resolved as there are experiments (Davis 
1975) in which the acoustic directivity pattern generated by the vortex wake shed 
from a fixed airfoil with a thin, but blunt trailing edge clearly exhibited the strong 
preferential upstream radiation associated with the no-Kutta-condition solution. As 
a corollary to this remark, we might suggest that  acoustic measurements in the far 
field may often be more easily made than flow measurements close to  a trailing edge, 
and may, in conjunction with theory, indeed be a more decisive way of establishing 
trailing-edge conditions. The impressive agreement depicted in figure 1 and discussed 
in § 3 above, together with the experiments of Bechert & Pfizenmaier and the theory 
of Daniels, must be seen as strong support for the application of a full Kutta condition 
in most high-Reynolds-number, moderate-frequency, low-amplitude aeroacoustic 
problems. 



280 D. G. Crighton 

5. The Kutta condition in unsteady leading-edge flows 
Although the justification for applying a Kutta condition to unsteady trailing-edge 

flows (in some parameter ranges) is recent, the idea itself is not, having first been used 
more than fifty years ago. The idea of applying such a condition a t  the Eeading edge 
of a splitter plate or airfoil is, on the other hand, altogether novel; its consequences 
have yet to be appreciated in anything but the simplest cases - in which several 
puzzling features remain - and the deduction of a matching inner viscous structure 
appears to be a long way off. 

Application of a leading-edge Kutta condition appears to have first been made, 
simultaneously and independently, by Goldstein (1981) and Howe (1981), with rather 
different views in mind. The basic problem envisaged by both authors involves the 
interaction of an acoustic wave with the leading edge of a semi-infinite plate in an 
aligned mean flow. Corresponding to the wake, supporting vortex waves or Helmholtz 
instabilities in the trailing-edge case, there are now viscous boundary layers (assumed 
thin and attached) on the plate surfaces. These are taken by Howe to be capable of 
supporting weakly amplifying Tollmien-Schlichting instabilities whose amplitudes 
are to be determined in terms of the forcing field by the elimination of the Ix1-4 
pressure and velocity singularities at the leading edge. Goldstein does not accept so 
simple a view, and rejects the boundary layer as such from having the ability to  
eliminate leading-edge singularities. He argues that near the edge the boundary layers 
are usually very thin and highly stable - in which case some condition other than one 
at the edge is needed to provide a ‘receptivity criterion’ determining the amplitudes 
of the Tollmien-Schlichting waves which can be observed further downstream, in 
terms of the forcing. (The doubly infinite shear-layer ‘causality criterion’ used in this 
context by Tam (1971, 1979) may possibly be what is needed - but that does not 
concern us here, beyond the fact that this criterion and Howe’s edge condition each 
evidently relate the instability wave amplitude linearly to that of the forcing.) Gold- 
stein’s idea instead is that the plate must be embedded in a transversely sheared 
incident flow which, as it divides past the plate, remains an inherently unstable flow 
on scales unrelated to those of the viscous boundary layers. The best illustration of 
such a flow is afforded by the edge-tone configuration (see, for example, Karamcheti 
et al. 1969) in which a two-dimensional jet issuing from a high-aspect-ratio rectangular 
nozzle develops an instability downstream and then interacts with a symmetrically 
placed wedge or splitter plate. Upstream of the leading edge (of the wedge) the jet 
sustains a sinuous (i.e. antisymmetric, flapping) instability; downstream the divided 
jet remains unstable with (on each half separately) a symmetric varicose, breathing 
mode of instability. There is a phase difference of 77 between the motions on the upper 
and lower surfaces, as shown in figure 4 which is taken from Goldstein’s paper (figure 
11, plate 1) .  

Goldstein starts by finding a solution, bounded everywhere, for the interaction 
problem with an inviscid transversely sheared mean flow. The flow has different 
instability characteristics upstream and downstream of the edge (as noted above), 
but in this solution no amplifying instability waves are excited and there is singular 
behaviour a t  the (leading) edge. Call this solution $Jx) (with exp ( - iwt) understood, 
and despite the fact that  a potential may not always exist); this solution is not causal, 
i.e. is not the long-time limit of any initial-value problem, because it is not an analytic 
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FIGURE 4. Vortex shedding downstream of a leading edge placed in 
an unstable rcctaiigrilar jet. (Reproduced by courtesy of Dr I. Greber.) 

function of w in the half-plane Im ( w )  > 0. Next, an eigensolution #,(x) can be deter- 
mined, with forcing absent, this being singular at the edge, non-causal, and unbounded 
far down the plate where it is dominated by freely propagating and amplifying in- 
stabilities. The general solution, q5s(x) + C$,(x), is, generally, unbounded downstream, 
non-causal and singular at  the edge and, in Goldstein’s view, contains an ‘incident ’ 
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instability wave (for x < 0 say, with the hnlf-plane in x > 0, y = 0) propagating toward 
the edge. Significant choices of C would appear to be ( i )  C = 0, which is the usual choice 
in leading-edge problems; (ii) C = C,, such that the leading-edge singularities in $8 

and Cq5E cancel and a Kutta condition is satisfied; (iii) C = C,, such that a pole in 
9, + Cq5E is removed and the incident instability thereby cancelled. 

I n  cases (ii) and (iii) instabilities are produced downstream and in each case there 
is the 7r phase difference across the plate seen in figure 4. Case (i) is non-causal because, 
although it contains no instability waves downstream, it does contain one incident 
from upstream. Case (ii) has instability waves both upstream and downstream, but 
no singularities for finite x; note, however, that, in this leading-edge problem, the 
imposition of a Kutta condition does not guarantee causality (as it did, for uniform 
flows, in the trailing-edge problem of Crighton & Leppington 1974). The difference 
arises clearly because in the latter the flow was unstable only on one side of the edge, 
whereas in Goldstein’s model there are (generally) instabilities on both sides. Case 
(iii), with no incident instability, gives the unique causal solution - again in contrast 
to  the results of Crighton & Leppington where an infinity of causal solutions was 
found, only one of which satisfied a Kutta condition. Also, the causal solution here is 
unbounded downstream and singular a t  the edge. These remarks apply generally at 
low frequencies; as w increases, however, a condition w = w1 is reached beyond which 
the downstream flows are both stable, while the upstream flow remains unstable to 
sinuous modes up to a higher frequency w,, beyond which all flows in the problem are 
stable (for continuous profiles, a t  least). For w > w, one then has $E = 0 and the 
unique solution is $s with no instability wave upstream or downstream, with singu- 
larities a t  the edge, and with causal behaviour. For w1 < w < w, (and indeed for a, 
more complicated split of the frequency range if the mean flow is not symmetric about 
the line of the plate) there are no downstream instabilities, but usually one incident 
from upstream, and usually with singularities a t  the edge, etc. 

How the constant C should be chosen to  correspond to any particular observation 
is not known. Goldstein does not exclude the full Kutta condition solution (case (ii)), 
but seems to  prefer the causal case (iii) with no incident instability. Here it seems to 
me that there are great difficulties of interpretation. A Fourier integral representation 
is obtained, and for x < 0 the real-axis integration path is deformed into an appropriate 
half-plane, leading t o  an expression of thee field as the sum of pole contributions plus 
a branch line integral. The latter is always present for laterally unbounded flows, and 
cannot usefully be avoided by confining the flow between distant walls. Exact evalua- 
tions of the branch line integral cannot be achieved for any case of interest; asymptotic 
evaluation is straightforward and gives a field decreasing like IxI-1 for some ,8 > 0, 
as x --f - co. Among the pole contributions may be the instability wave, proportional 
to  exp { i ( k ,  - ik,) x} say, with k,, k, > 0 ,  but when x < 0 how is this to be distinguished 
as corresponding to  a physical structure, when added to it is a branch line integral 
which cannot be exactly evaluated and which certainly decreases far less rapidly as 
x + - coZ Moreover, since the branch cut may be freely deformed in the relevant 
half-plane, it may be deformed across the pole (corresponding to  k , - ik , )  with the 
result that  this is no longer a pole as regards x < 0 (this argument does not, of course, 
work simultaneously for x > 0 !). This is not to say that there are not circumstances 
in which there clearly is an instability wave incident on the leading edge; indeed all 
edge-tone experiments involve precisely this. However, there are difficulties in iden- 
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FIGURE 5 .  Schematic diagram of flu0 organ-pipe (after Howe 1981).  

tifying that wave, as seen from the leading edge, which lead me to feel that a t  this 
stage it is very much an open question as to  whether a Kutta condition (case (ii)) or 
causality (case (iii)) should be imposed. 

All the solutions ((i), (ii) and (iii)) lead to the same prediction for the far-field sound 
at  low frequencies, and this cannot therefore be used as a test of the edge condition. 
There might, however, be a detectable difference in the far field for the edge tone, 
but here there are in all theories a number of empirical inputs whose effect could mask 
any associated with edge conditions. That is not so in the case of instruments such as 
the flue organ-pipe, to which Howe (1981) applies his leading-edge condition. Howe’s 
model of the half-plane scattering problem is much simpler than Goldstein’s; Tollmien- 
Schlichting waves propagate in the boundary layers downstream, and generate dis- 
placement thickness fluctuations which themselves provide a boundary condition 

a 
- ( $ I  + #) = Gexp ( i kx )  
a9 

applied on the plate, y = 0,, x > 0, to the sum of the incident and scattered potentials, 
# I ,  #’ respectively. These satisfy the convected wave equation, and instabilities are 
absent from the outer flows; the only instabilities are those of the boundary layer, with 
complex k = k ,  - ik,, k,, k ,  > 0, and with the phase difference of n, so that V+ = P. 
It is straightforward to determine $f  from Wiener-Hopf arguments of a simple kind, 
and to determine ?$ so that a Kutta condition holds a t  the leading edge. Howe shows 
that, when it does, acousticenergyisextracted from the mean flow by the leading-edge 
interaction, in contrast to the situation in 9 4 where acoustic energy is lost from the 
incident wave in trailing-edge flows with a Kutta condition. 

I n  application to  the flue organ-pipe, Howe specifically excludes effects of upstream 
instability of the jet impinging on the downstream edge A of the mouth, and deter- 
mines the displacement thickness fluctuations downstream by a Kutta condition a t  
A (see figure 5). This condition is then used a second time to give a unique solution to 
an integral equation for the flux through the mouth - leaving singularities in velocity 
and pressure a t  the upstream trailing edge B ! It is argued that elimination of these 
singularities requires (as in 9 3) explicit analysis of instability waves on the thin jet 
spanning AB,  an effect which, for the edge tone, would be expected to  be more 
important than the downstream leading-edge condition. For the organ-pipe the 
assertion that the boundary-layer displacement thickness fluctuations, coupled to the 
resonator characteristics of the pipe, are the dominant mechanism certainly leads to 
an impressive outright prediction of the threshold blowing velocities of the first few 
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modes. A corresponding theory of the edge tone, based on jet instability and trailing- 
edge Kutta conditions, is badly needed, and we hope (Crighton & Innes 1981) in due 
course to  provide one. 

6. Suppression of broadband jet turbulence and noise by tonal excitation 
Experiments have been mentioned several times above in which a jet exhaust has 

been perturbed by coherent acoustic waves incident on the exit plane from within the 
tailpipe. I n  part these experiments have been directed toward an understanding of 
large-scale coherent structures in jets, the acoustic forcing serving to  raise those 
structures in a phase-locked form above the fine-scale random background, and in 
part toward an understanding of the interaction of internally generated aeroengine 
noise with the nozzle and exhaust flow. The results of the experiments have shown the 
two aspects to  be so intertwined as to be incapable of interpretation separately. 

An axisymmetric jet is susceptible to  three basic forms of instability. If the free 
shear layer a t  exit is laminar, an essentially two-dimensional spaiial instability can 
develop near the exit, with properties (growth rates and phase speeds) which are well 
predicted by the theory of the spatial stability of a plane inviscid hyperbolic-tangent 
profile (Michalke 1965). If the exit shear layer is fully turbulent and the turbulence 
scales sufficiently small compared with the wavelength of the maximally amplified 
mode, one would expect the same type of instability to arise, with the mean profile 
determining the properties of the instability waves. That expectation is not always 
fulfilled (cf. Crow & Champagne 1971, p. 5 5 7 ) ,  however, although there is generally 
very little difference between the laminar velocity profile and the mean profile of the 
turbulent layer. A possible reason may be that, when a shear layer is tyipped into tur- 
bulence, it is too coarse-grained with respect to the instability wavelength to behave 
as an equivalent laminar flow. This is a point which needs further work, as conirol 
of the whole jet exhaust stems most conveniently from exploitation of the instability 
of the initial shear layer. 

The second type of instability takes place over the rango D 5 x 5 6D, where D is 
the nozzle exit diameter. Here wavelike instability modes (with axisymmetry or with 
azimuthal variation) can develop on the mean profile; the waves are long (wave- 
length ,., 2 0 )  compared with the turbulence scales, and the whole of the jet in which 
there is a potential core takes part in this ' jet-column ' instability. 

Beyond the end of the potential core, the bell-shaped mean profile becomes stable 
to  axisymmetric modes, but remains unstable t o  modes with azimuthal variation 
(in particular to the n = f. 1 spiral modes). Although there is, therefore, the possibility 
of further amplification far downstream of the spiral modes, that  seems never to occur, 
in subsonic flows a t  any rate; i t  is prevented by the third type of instability which 
develops upstream of the end of the potential core and involves the development of 
rapid azimuthal variation on axisymmetric and spiral modes, and the loss of a11 
azimuthal coherence and structure before the fully developed (x 2 8Dj part of the 
flow is reached. 

Many experiments on jet forcing have been carried out over the past decade, with 
frequencies both in the range corresponding to the initial shear-layer instability and 
in that for the jet-column instability, and over a wide range of forcing amplitudes 
(relative to the velocity or dynamic head of the exhaust jet). At sufficiently low forcing 
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levels u J U ,  say ue/U 5 0.1 yo with U the exit velocity and u, the r.m.s. (filtered) 
exit plane fluctuation velocity, the jet response is linear and one might expect the 
amplifications as well as the growth rates of a large-scale jet column mode to be well 
predicted by linear theory for axisymmetric jets (Michalke 1971), perhaps with modi- 
fications to  allow for spreading of the mean flow with axial distance as in Crighton & 
Gaster (1976). That comparison has not in fact been carried out for a high-Reynolds- 
number turbulent flow, though the reasonable agreement which is still obtained when 
the response is nonlinear (Crighton & Gaster 1976; Strange 1981) leads one to antici- 
pate that the linear response is well understood. Certainly, phase speeds and trans- 
verse eigenfunction shapes are well predicted by linear theory, as is the emergence of 
a preferred mode of spatial instability, with Strouhal number St, ( = f D / U )  around 0.5, 
the precise value being determined by the ratio of shear-layer thikkness to diameter 
and by the flow variable and axial and transverse location considered. The generation 
of these large-scale waves takes place, as explained in $5 3, 4, a t  the nozzle lip, where 
the satisfaction of a Kutta condition leads to a loss of acoustic energy from the incident 
waves to  the instability. As the instability wave amplifies and decays, i t  radiates 
negligibte acoustic power (in the linear response regime) in subsonic flow conditions 
(see figure 1) though in supersonic flow is seems likely that the instability wave itself 
is a powerful source of radiation. 

At forcing levels ue/U > 0.1 yo, and with the forcing coherent across the exit plane 
as in a plane acoustic wave, the instability wave response is significantly nonlinear, 
and very dramatic changes take place in the character of the internal turbulence 
fluctuations and the far-field noise. Conflicting evidence comes from papers published 
to  date, though most of the results fall qualitatively into one of two categories des- 
cribed in this and the next section. I n  no single experiment, or set of experiments on 
the same rig, have both types of behaviour been observed in different parameter 
regimes, and it is difficult to find a condition which decisively separates published 
data into one category or the other. The two categories could reflect differences in 
the type of initial shear layer (laminar, transitional, fully turbulent), or in the level 
of free-stream turbulence, or in the Mach number, or the Reynolds number, or some 
combination of all these parameters and more. It seems to me, however, that  presently 
available data are best sorted into one category or the other according to  whether the 
jet Reynolds number Re, = U D / v  is less than or greater than about lo5. For Re, 5 lo5, 
the jet response (as reflected in hot-wire and pressure probe readings taken in the 
mixing layer, potential core and near field) to forcing a t  a single frequency takes the 
form of an amplification of the spectral levels a t  the forcing frequency and its integral 
harmonics and subharmonics, and a suppression of the broadband levels elsewhere. 
The same behaviour is observed in the acoustic far field (though this has not often 
been measured). For Re, > lo5 the response takes the form of a broadband increase, 
almost uniform over the entire spectrum and almost uniform over the far-field direc- 
tivity, provided the forcing tone lies reasonably close t o  the spectral peak of the 
unforced response. 

More detailed description of these startlingly different types of response will follow 
in a moment. To see that the Re,>< lo5 criterion is reasonable, however, consider 
table 1 in which are summarized some of the results obtained by investigators of jet 
response a t  forcing amplitudes for which the instability wave behaviour (as determined 
by, e.g., hot-wire velocity measurements filtered in a narrow band around the forcing 
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Shear Broadband 
Investigator Reu layer St rcsponse Remarks 

Bechert & 6 x  lo5 T S t D  + 0.4 %-176 forcing 
Pfizenmaier 
(1975b) 

Clian (1974) 2.6 x lo5 T S t D  Not Instability wave 
measured only measured 

Crow & 1.1 X 104-1.2 X 10' T S t D  - 1 y0-2 forcing 
Champagne (197 1) 

Bindcr (1 97!)) 
Favre-Marinct & 1.0 x 104-4 x 10* L S t D  + (small) Forcing up to 40% 

.Jitbcllin (1980) Gx 105-1.3 x 10G T 

Kibcns (1979) 5 x 104-l.0 x lo5 L 
L 

Kibens (1980) 1.0 x 105-8 x lo5 T 

Morrison & 3.7 x 103-8.7 x lo3 L 
McLangEilin ( 1  979) 

Moore ( 1 9 7 7 ~ )  1.3 x 105-l.0 x 1 0 6  T 

Zaman & Hussain 1.0 x 104-4 x lo4 
(1981) 

No Not 
forcing measured 

Similar results for 
hot jets and super- 
sonic jets 

for hot jets 
Larger reduction 

- 
Reduction at high 
frequencies only 

Development of 
coherent energy at 
S t D  only, not at  S t ,  

Supersonic jets, 

0.2 maximum 

&Ij = 1.4, 2.1, 2.5 

forcing 
- 

TABLE 1 .  Broadband jet response to single frequency forcing a t  amplitudes for 
which the instability wave behaviour is nonlinear. 

frequency) is nonlinear. The third column notes whether the exit shear layer was 
laminar or turbulent; a t  the higher Re, i t  was usually naturally turbulent, but at 
lower Re, may have been tripped or may have been transitional, I n  the fourth column 
is an indication as to  whether the frequency range covered the sensitive instability 
frequencies of the large-scale jet-column mode (st,) or whether it covered the much 
higher range, typically by a factor 8, of instabilities on the initial shear layer (st,). 
A plus/minus sign in the next column indicates an increase/decrease in the broadband 
response, while the final column shows that there are great differences in the values of 
other parameters not always quoted (e.g. forcing level of 0.2 yo for ;Iloore, 40 yo for 
Favre-Marinet & Binder) which may be a t  least as important as those reported in 
the papers. 

A seminal paper in the area of coherent structure studies in jets is that  of Crow & 
Champagne (1971) whose measurements cover the Reynolds number range 1 .1  x lo4 
to 1.2 x lo5 and who tripped the nozzle exit boundary layer to destroy the fine-scale 
wave pattern close to  the nozzle arising from the initial shear-layer instability. Axi- 
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FIGURE 6. Axial profiles of r.m.s. axial velocity fluctuation on centreline. The solid curve 
wit,hout data points represent's the overall value of u / U .  Square data symbols denote the 
cont,ribution of the preferred mode fundamental, u,.,,/ U ,  triangular symbols denot,e the con- 
tribution of the harmonic, ue6"/U. The dashed curve represents the residual contribution not 
bound up in the fundamental or harmonic. (From Crow & Champagne (19711.) 

symmetric forcing from within the tailpipe was applied over a Strouhal number range 
around that of the preferred mode (which here had St, = 0.3). The study of centreline 
hot-wire velocity measurements indicated that, for the typical forcing level of 1-2 yo 
(well into the nonlinear response regime), it was possible to phase-lock the first five 
or six diameters of the flow, binding most of the turbulence energy into the periodic 
component and leaving only a small fraction of fine-scale turbulence energy not locked 
to the forcing. This is illustrated in figure 6 (figure 14 of Crow & Champagne's paper) 
which gives the variation of r.m.s. centreline axial velocity fluctuation u, normalized 
by the exit velocity U ,  as a function of downstream distance x / D ,  together with the 
velocity fluctuations uo.30 and uo.60 filtered in narrow bands around X t ,  = 0.30 and 
0.60 and the residual turbulence intensity not bound into these narrow-band fluc- 
tuations. As judged from these measurements (at Re, = 105) control of the first six 
diameters is complete - albeit a t  the expense of introducing fluctuations in velocity 
considerably larger than in the absence of forcing (see figure 13 of Crow & Champagne 
1971, where u / U  a t  x / D  = 4 is increased by a factor 4 by forcing a t  St, = 0.3). 

The suppression of the broadband components of u can be seen in figure 7 (figure 
30 of Crow & Champagne 1971) which shows centreline axial turbulence velocity 
frequency spectra at x / D  = 4 and on-axis ( a ) ,  on the lip-line r = 40 ( b ) ,  and in the 
near field, r = 3D/4 (c). Despite the increased fluctuation u at  the axial location, it 
is clear that  except in narrow bands around the forcing tone and its (higher) harmonics 
there is a reduction of the broadband spectral levels. 

Similar results have been found by several investigators when the initial shear layer 
is laminar and the forcing is tuned.to its frequency for niaximal amplification. Here, 
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FIGURE 7.  Turbulence velocity spectra a t  x / D  = 4 and (a) r / D  = 0,  ( b )  r / D  = 4, ( c )  r / D  = f. 
Square data points denote the unforced case and round data points t,he case of 2 yo forcing at 
S ~ D  = 0.30. (From Crow & Champagne (1971).) 

however, a prominent feature is that tones are produced not only a t  the excitation 
frequency fe, but a t  its subharmonics $ f e ,  f ,  and even 6 f,, and a t  frequencies formed 
by quadratic interaction of these tones (to give Q f, + $ f,, for example). Elsewhere the 
broadband levels are suppressed by the excitation. This situation is illustrated in 
figure 8 (figures 2 and 3 of Kibens 1979), in which the tones and suppressed broadband 
levels are seen both in the jet turbulence spectrum and in the far-field acoustic spec- 
trum. There is no Doppler shift between the tone frequencies in the jet and in the far 
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FIGURE 8. Near-field pressure spectrum (a )  at position ( z / D ,  r /D)  = ( 1 ,  1 ) ;  acoustic pressure 
spectrum ( b )  at (50, 50). U = 30.5 m s-l, fe = 4525 Hz. (From Kibens (1979).) (a)  -- 
63.5 dB, with excitation; - - -, 55.2 dB, no excitation; ( b )  --, 50 dB, with excitation; - - - 
43 dB. no excitation. 

field - which implies that  the sound field a t  these frequencies is generated by events 
a t  locations fixed relative to  the nozzle, rather than by the convected eddies usually 
taken to  be the source of jet noise. Kibens' flow visualization indicates that these 
events are the succession of vortex pairings corresponding to  the subharmonic fre- 
quencies. I n  the nonlinear response regime, the initial shear layer rolls up quickly 
into a succession of axisymmetric vortex rings which propagate at slightly different 
speeds and merge a t  a fixed position into larder vortices which merge, or pair, further 
downstream. With typical ratios (around 100) of jet diameter to initial shear-layer 
thickness, the vortex passage frequency ife after three pairings is close to the pre- 
ferred frequency of the jet column mode, where the length scales are too large to  
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permit a further pairing before the end of the potential core, and this usually 
terminates the pairing sequence - the jet column mode thereafter amplifying and 
decaying, with production of integral harmonics, as in the Crow & Champagne 
experiments. 

Naturally, the quadratic nonlinearity of the incompressible Navier-Stokes equations 
cannot generate a subharmonic a t  frequency if, from forcing at f,, and the process of 
vortex pairing apparently to ' create ' energy a t  & f, is actually the climax to the process 
of amplification of the unstable subharmonic which is inevitably present a t  the nozzle 
exit, albeit generally a t  a very low level. This fact, that  subharmonic amplification is 
the cause, rather than the outcome, of vortex pairing, is made very clear in recent work 
by Ho & Huang (1981), who forced a plane mixing layer over a range of frequencies f, 
from somewhat above the frequency f, of maximal amplification down to around 
+ fnL. They showed that the response frequency f, detected in the shear layer was equal 
t o  the forcing frequency over the range f, > f, > 8 f, (stage I), but that around & f, 
the response frequency jumped discontinuously to  a second stage (11)) starting at 
f, = f, and then decressing according to  f T  = 2 f,. When f, reaches 4 f, the frequency 
f, jumps again to  f,,, and decreases in stage 111 with f, = 3f,; and so on, a total of four 
stages being observed. I n  stage N ,  vortices merge N at a time to produce a sparse set 
of large vortices as the Nth subharmonic amplifies on the shear layer; actually the 
merging usually first takes place in subgroups which then merge, although merging 
of four vortices simultaneously was observed for certaln phase relationships between 
the subharmonic forcing a t  frequency f, and the fundamental a t  frequency 4f,. 
Measurements of the amplification of fundamental and subharmonic by Ho & Huang 
make it clear that  the amplification of the fundamental and its saturation under non- 
linear effects do not determine where vortex merging or pairing occurs; that  occurs, 
rather, a t  the locations where the subharmonic wave achieves its maximum amplitude. 

If the initial shear layer is fully turbulent i t  may not be possible to excite this se- 
quence of vortex mergings. However, subharmonic growth and vortex pairing can 
still take place on the jet-column further downstream. Crow & Champagne (1971) 
forced their jet a t  Strouhal number St, = 0.6, for which the preferred mode is the 
subharmonic St, = 0.3, and observed the vortex pairing to  produce a virtual dis- 
integration of the jet column, so great was the increase in spreading rate. Their 
explanation, though - that  the 0.6 mode grows, pairs and then launches the preferred 
mode a t  a greatly enhanced initial level - is inconsistent with the criterion of HO & 
Huang. Far from being launched from the vortex-pairing location, the preferred mode 
should have attained its peak level there. 

I n  summary, the situation described here is very much in line with the expectations 
of Crow & Champagne (1971,  p. 548); forcing - which amounts to control of the up- 
stream boundary condition on the jet or shear layer - restores a degree of control to 
an otherwise chaotic flow, fixing the frequency, phase and azimuthal coherence of 
vortical wavetrains and, because of their nature as instabilities, raising them above 
the fine-scale background turbulence. Much of the turbulent energy in frequency 
bands around the forcing and its harmonics and subharmonics is locked to the forcing, 
and the broadband levels are reduced elsewhere by several dB. Further, in the non- 
linear response regime, the unstable waves do not suffer the great amplification (by 
20 or 30 dB) which they do in the linear regime - and it is therefore possible for the 
overall r.m.5. fluctuation to actually decrease with the application of forcing, though 
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the overall decrease is always small (in terms of dB) in all the investigations quoted 
in table 1 .  A question of the greatest significance in the jet noise problem is whether 
the control afforded by the merging vortical instabilities, and reflected in the pre- 
dominantly tonal internal and acoustic spectra, persists into the conditions of high 
Reynolds and Mach numbers, high temperatures and high levels of tailpipe turbulence 
which characterize real aeroengines. The answer, to judge from the observations of 
the next section, seems a t  the moment to be a definite ‘no’. 

7. Broadband amplification of jet turbulence and noise by tonal excitation 
For more than a decade, jet noise prediction schemes have included significant 

contributions from ‘excess ’ or ‘internal ’ noise fields generated by unsteady processes 
within a jet engine (combustion, flow separation, etc.), though a quantitative con- 
nection between a specific process and the sound field has rarely been established, and 
excess noise has increasingly been detected at  surprisingly high exhaust speeds where 
one would have expected jet mixing noise to  dominate. The excess noise position was 
radically changed by the discovery, independently by Bechert & Pfizenniaier (1975b) 
and Moore ( 1 9 7 7 ~ ) )  of a mechanism altogether more ubiquitous, subtle and insidious 
than internal noise per se. 

Return to  table 1 and consider the three results for Re, > 5 x lo5. Here tonal 
forcing a t  the jet-column range of instability frequencies (0.2 < St, < 0.8) leads (in 
addition to  large amplification of the tone component) to  a large increase in the 
broadband turbulence spectrum and in the far field acoustic spectrum. The increase 
is almost uniform in frequency over many octaves, and the directivity pattern of 
the overall sound pressure is very similar to  that of ‘unexcited’ jet noise - but 
increased in level by as much as 8 dB. If the excitation is a plane acoustic wave, then 
the tone protrudes from the spectrum in the far field, a t  least for cold jets but not 
necessarily for hot jets. However, the far-field tone amplitude is linearly related to 
the amplitude of the incident wave in the jet pipe, although the instability wave 
responds nonlinearly; and, further, the sum of the far-field tone power plus the power 
reflected back down the jet pipe is very close to  the incident acoustic power at  Helm- 
holtz numbers above unity (roughly) and less than the incident power by as much as 
15 dB a t  lower Helmholtz numbers - just as in the case of linear instability response. 
This implies that the propagation of the acoustic tone to the far-field is linear (at any 
rate a t  forcing levels up to about 1 yo), but that interaction of the tone with the nozzle 
launches a nonlinear instability wave whose interaction with the background turbu- 
lence in the jet leads to  the broadband amplification. 

If, in the same high-Reynolds-number range, the forcing is applied at  high Strouhal 
numbers (say St ,  > 2 )  then there is no tonal response at all (as the shear layer is 
invariably turbulent a t  these Re,), and the effect of forcing is to reduce the broadband 
turbulence and noise spectra. The reduction is small (not more than 1-2 dB for cold 
jets, a little more for hot jets with exit temperature T = GOO OK), and confined to 
frequencies below the forcing frequency. 

Consider now a typical aeroengine exhaust condition with, say, D = 1 m, 
U = 500 m s-1 and T = 900 “I<. The corresponding Re, is about 5 x lo6, and the 
initial shear layer is undoubtedly turbulent, as also is the flow in the jet pipe and 
potential core. It seems certain then that conditions will in practice favour the broad- 
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band amplification process, and indeed it has recently been shown that this process 
operates in many high Re, situations (beyond the cold subsonic single-stream jets 
which mostly figure in table 1).  In  the original papers of Bechert & Pfizenmaier and 
Moore, broadband amplification of a plane wave pure tone excitation was demon- 
strated for cold subsonic jets with Re, > 105, providing the forcing Strouhal number 
lies in the range 0.2 < St, < 0.8, say. Coherent velocity fluctuations of 0.1. % U are 
suficient to provoke nonlinear instability wave response and broadband gain, and the 
amplified jet noise is, apart from the toneand its harmonics in the spectrum, “morpho- 
logically similar to ordinary jet noise, but the levels are higher ” (Deneuville & Jacques 
1977). As the broadband lift is a nonlinear function of the forcing velocity, and as 
the latter does not change linearly with 17, the amplified jet noise does not have the 
US intensity scaling for pure jet noise which is realized down to very low velocities on 
model rigs with very carefully controlled upstream conditions; rather, it has some- 
thing like a I76 scaling, which is often found in ‘excess’ aeroengine noise (excess noise 
being simply noise above the pure jet mixing noise level a t  the given engine exhaust 
conditions). 

Flow visualization studies by Moore have shown that for cold jets there is a more or 
less fixed location, around x = 3-40, a t  which pairing takes place between axisym- 
metric vortex rings, the position of pairing being localized by the excitation. The 
presence of the corresponding subharmonic cannot be clearly detected in Moore’s 
spectra, nor in those of Jubelin for similar conditions; for hot jets, however, Jubelin 
found that a spectral peak was present at the subharmonic frequency, and that it 
was entirely stable and repeatable (the exit temperatures were 600 and 900 OK). 

Moore (1977 b )  has also used an acoustic telescope technique to show that the apparent 
source position for all frequenciesis, in the case of amplified noise, around the vortex- 
pairing location, whereas, when the forcing is linear and the jet noise not amplified, 
the sources are distributed over many diameters of the exhaust, with high frequencies 
coming from near the nozzle, low frequencies from sources well down in the fully 
developed jet. 

Moore (1977a; see figure 9 here, taken from that paper) makes brief reference to 
excitation of a broadband nature itself, and it has been found that broadband amplifi- 
cation still results in this case (although in a given experimental facility the ampli- 
fication will usually be less because of weaker response of the lotidspeaker system to 
broadband drive). Deneuville & Jacques quote several examples which show that 
rather uniform amplification of several dB is found on either side of the frequencies 
occupied by broadband forcing. They also emphasize that although in the subsonic 
cold jet experiments the forcing is easily discerned in the far field, where generally 
the tone level exceeds the overall jet noise, there are many cases in which it is impossible 
to detect the forcing. As an example they quote results for a jet with M = 1.0, 
T = 300 OK in which the only irregularities in the spectrum are to  be seen a t  120” 
to the jet exhaust, and there they are sufficiently slight as to deserve no comment - 
but the jet actually suffers from broadband amplification by a pure tone. Bechert & 
Pfizenmaier (1976) used an array of loudspeakers feeding into the jet pipe to force a 
cold subsonic jet with a first-order helical mode. The frequency was such that the 
mode was cut off in the jet pipe and therefore not detectable in the far field, although 
it generated a nonlinear instability wave in the jet and broadband noise amplification 
very much as in the plane-wave case. The upshot of these results is t h a t  the presence 
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FIGURE 9. Comparison of far-field spectra (--) with and (-) without excitation, at 60' t o  
jet axis, at jet velocity of 0.490,. (a) Pure tone excitation. ( b )  30 Hz bandwidth random exci- 
tation. ( c )  300 Hz bandwidth random excitation. (d) Random excitation in band from 1 kHz 
to 3 kHz. - - -, excitation spectrum. (From Moore 1977a.) 

of irregularities in the far-field spectra is not a satisfactory criterion by which to judge 
whether jet noise amplification has taken place. 

Jubelin (1980) has studied forcing effects on hot jets, with temperature up to 900 "K 
and Mach number 0.5. Broadband amplification results, much as for cold jets, but 
with the following differences: (i) the amplification is not as uniform in angle for the 
hot jet, being small close to the exhaust direction and much larger in the forward arc, 
(ii) the amplification is less uniform in frequency for the hot jet, being smaller a t  low 
frequencies than for the cold jet and generally more concentrated around the forcing 
frequency, (iii) the hot jet is less sensitive to excitation than the cold in the sense that 
the slope of the jet noise power ws. excitation curve is less for the hot jet, (iv) the 
threshold for amplification may, for the hot jet, be as much as 25 dB less in power 
than the jet noise power, whereas for the cold jet the excitation power must, for 
broadband amplification, be much closer to the jet noise power, (v) as noted before, 
a subharmonic a t  half the forcing frequency is a pronounced and stable feature of the 
spectra of excited hot jets, but not of cold jets, (vi) the broadband decrease which 
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accompanies high-frequency forcing is more noticeable on hot jets than cold (though 
in neither case does i t  exceed 2-3 dB). These results are of particular importance, as 
inodel jets a t  these high temperatures and with tailpipe excitation are the best 
simulation of a jet engine that can be azhieved. 

I n  the same paper, Jubelin also showed the presence of a broadband amplification 
for warm (i.e. exit temperature 300 OK) supersonic jets. Jets a t  Mach number 1.2 were 
excited both in underexpanded flow through a convergent nozzle and in perfectly 
expanded flow through a convergent- divergent nozzle. I n  the first case the spectra a t  
all angles from 60" to the exhaust round into the forward arc are dominated by high 
levels of broadband shock-associated noise, gene1 ated by the interaction of shear-layer 
turbulence with the cellular wave pattern in the exhaust jet; in the latter case there 
is some slight evidence of shock-associated noise but the main spectral energy is 
associated with supersonic mixing noise (though not Mach wave radiation from supez- 
sonicnlly convected eddies as the value of M is not high enough for this a t  ambient 
temperatures). In both cases there is strong broadband amplification under fxcing 
at St,, = 0-46, with no evidence of the forcing in the spectra and rather large ampli- 
fications at  high frequencies and at  high angles to the exhaust. That shock-associated 
noise and mixing noise should both be amplified is not surprising, as both &re generated 
by the broadband turbulence in the jet; no account has yet been taken, however, in 
prediction schemes, of the fact that each may suffer broadband amplification of 5 dB 
or more in spectral ranges which at full scale are extremely important in the deter- 
mination of perceived noise levels (PNdB). A further point which should be observed 
is that in none of these studies has any saturation effect been found for the broadband 
amplification; the maximum amplification obtained has been limited by the available 
drive power, and there might well be greater amplification if forcing levels higher than 
0.2-1 yo could be applied. On the other hand, as remarked by Moore (1977a), jet 
engine noise levels correlate reasonably from one engine to another, and far better 
hhan they correlate with scaled-up model data, which might be taken to  imply that 
all jet engines are in fact excited to the point of saturation. 

The broadband amplification effect is thus ubiquitous in the noise and turbulence 
of model jets; it occurs when forcing levels exceed a low threshold, over a wide range 
of Strouhal numbers over the temperature range 300-900 OK, and a t  subsonic or 
supersonic speeds, provided only that Re,, > lo5. Under these conditiom it  is elimi- 
nated, or greatly alleviated, by two mechanisms - coaxial flow, and use of a convoluted 
suppressor nozzle. Moore & Brierley (1 979) and Jubelin ( I  980) have studied the effects 
of a secondary coannular flow on the noise of an excited primary jet, with possible 
application not only to  turbofan engines but also to  the noise of a single-stream turbojet 
in flight. There are several mean flow parameters here and only a very limited number 
of configurations has been examined so far. I n  each case, the behaviour of the primary 
alone under excitation was as expected, but Jubelin found no signiJicanl amplijcation 
of the dual-$ow jet in any case, regardless of whether the primary stream forcing was 
tuned to  the preferred frequency of the primary or secondary stream. I n  the Rolls 
Royce experiments the amplification decreased to a minimum (effectively zero) a t  
a secondary to primary velocity ratio of 0.5, where high-speed films showed that there 
was no longer any evidence of vortex pairing on the primary jet. Thus the fairly definite 
conclusion must be that external flow inhibits instability wave growth and prevents 
the vortex pairing which seems to be the source of broadband amplification. The posi- 
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tion may be different if the forcing is injected into the secondary flow, rather than the 
primary, but that  situation is irrelevant if the secondary flow is the infinite ambient 
medium in the engine-in-flight case, and less interesting anyhow in the turbofan 
engine case where one would expect secondary excitation to  be small. 

Several authors have considered tailoring the mean flow profile in a single-stream 
jet so as to inhibit instabilitywavegrowth. Chan & Templin (1974) used a non-uniform 
gauze to produce a bell-shaped profile a t  exit (this according t o  well-known results in 
stability theory being stable t o  axisymmetric disturbances), and showed that all such 
disturbances decayed rapidly downstream ; non-axisymmetric modes can, however, 
still grow on the modified profile, but were not considered. Bechert & Pfizenmaier 
( 1 9 7 5 ~ )  showed that a simple annular ring inside the nozzle reduced the broadband 
amplification, though how that was achieved is not clear, as the ring does not change 
plane-wave forcing nor does it significantly change the mean profile. Moore & Brierley 
(1979) examined the forcing of a cold jet from a 6-chuted and a 7-lobed suppressor 
nozzle and compared the noise fields with those from their parallel circular nozzle (at 
the same mass flow); only very small levels of amplification were found for the sup- 
pressor nozzles as against the 8 dB or so for the plain nozzle. The explanation given 
is that  there is no thin shear layer on which coherent structures can grow, but probably 
most important is the fact that  the suppressor nozzles destroy all azimuthal coherence. 
I n  any event, the lack of amplification may well be the prime mechanism behind the 
silencing action of these nozzles (for which many different claims have been made) 
and may explain the great variability of effectiveness of them in different situations. 

There is increasing indirect evidence for amplification phenomena in practically 
important cases, whether model jets, or full-scale combustion and turbine rigs, or 
complete engines. Many such pieces of evidence are quoted in a delightful paper by 
Deneuville & Jacques (1977) who point out that  the model and rig tests fully represent 
practical conditions. Among those discussed are the following: 

( 1 )  Frequent occurrence of noise fields with characteristics of pure jet noise, but 
with higher levels, while a model rig was being set up and adjusted. 

( 2 )  A 2 dB broadband noise increase from a hot jet rig when the mass flows in the 
fuel sprays were imperfectly balanced, leading to flame instability md low-frequency 
parasitic tones. I n  the axample chosen the jet was supercritical, with mixing and 
shock-associated noise in different angular and spectral ranges - and both fields were 
amplified. 

(3)  I n  this hot jet rig, a large nozzle was fitted and the combustion turned off. 
For a given nozzle pressure ratio the large nozzle leads to a much greater flow velocity 
through the combustion charnber, and to  higher, though similar, noise spectra a t  all 
angles than in the case of a small nozzle scaled to the same area. I n  this case there is 
no evidence of any tones in the spectra, but i t  is thought that  there is an amplification 
effect in response to  large fluctuations developed in the combustion chamber. 
(4) A conical nozzle flow emerging into a cylindrical ejector shroud (with only weak 

secondary iiow) can, in some flow regimes, excite open-tube axial resonances in the 
shroud. These react upon the jet, causing broadband amplification distinguishable 
(from spectral and angular properties) from broadband noise generated by hydro- 
dynamic interaction of the jet with the ejector. 

(5) The Concorde Olympus 593 engine has a field shaFe generally 3-5 dB above jet 
noise prediction, especially in the forward arc, and though the spectra contain a lot 
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of mid- and high-frequency internal noise components it is possible that much of the 
low-frequency excess noise is amplified jet noise. 

(6)  A turbojet engine was run a t  the same running point with a small and a large 
nozzle, with the aid of upstream throttling. With the large nozzle, jet noise levels are 
low and what is measured is essentially internal noise (with a flat spectrum, rather 
different from that of jet noise). Then the internal noise levels are corrected for nozzle 
area and compared with the measured noise for the small nozzle - for which it is found 
that the spectra are like those of jet noise, but much higher in level than according to 
prediction. The internal noise levels are rather accurately known from the large-nozzle 
measurements, and cannot explain the discrepancy which, it is concluded, is caused by 
jet noise amplification by the internal noise. 

(7) A perforated honeycomb tailpipe liner, tuned to attenuate high frequencies, was 
fitted to a Larzac engine on which jet noise levels were very low and internal noise 
levels high; the liner attenuated only the expected high frequencies. When the same 
liner was fitted to the Olympus 593 a t  a condition where the predicted jet noise and 
measured noise were comparable, the liner gave significant attenuations (2-6 dB) 
over a very wide frequency range, and in particular a uniform 2 dB attenuation 
below 400 Hz. Aceustic absorption by the liner is not possible a t  such low frequencies 
and the effect is attributed to a reduction of upstream forcing levels, and hence a 
reduction of jet noise amplification, by the liner. An ‘egg-box’ flow straightener fitted 
to  the Olympus 593 also leads to significant broadband reductions, particularly in 
the forward arc, which might be expected if the action of the device is to reduce tail- 
pipe fluctuations in a hot jet. 

Finally, in this catalogue of practical examples, Moore (19776) shows noise levels 
measured on a large ( D  = 0.3 m) hot jet rig with internal combustion noise; the 
spectra are similar to predicted pure mixing-noise spectra, with some irregularities 
a t  frequencies in the 200-400 Hz range characteristic of combustion noise, and up to  
10 dB higher. Moore estimated the internal excitation levels by extrapolating the 
energy in the combustion noise spectral bump back to the nozzle exit, and then used 
his (cold jet) results to predict that such excitation would produce a broadband 
increase of 8.5 dB - rather close to the observed difference. 

Enough has now been said to  convince the reader of the frequent occurrence of 
broadband amplification in many practical cases with naturally occurring types and 
levels of excitation. Most cases in which its occurrence is suspected do, however, 
involve static single-stream jets, and the work on dual flow jets makes it appear un- 
likely that broadband amplification can play such a significant role in engines in flight, 
or on turbofan engines. 

8. Concluding remarks 
I hope that this article will both persuade the general reader of the vitality of 

acoustics as a branch of fluid mechanics and provide a review of topical aspects of 
aeroacoustics. Paradoxically, perhaps, the main theme has been the interaction of 
unsteady, unstable vortical fields with solid boundaries and with external forcing. In 
some aspects (notably Q Q  3, 4) understanding is now satisfyingly complete, while in 
others ( Q  7) there are really not even the rudiments of an understanding of the fluid 
mechanics involved, and the chances of satisfactorily predicting the acoustics are 
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even more remote. For three very different approaches to  the subject of 3 7 the reader 
is referred to Ffowcs Williams & Kempton (1978), Morfey (1979) and Mankbadi & Liu 
(1980). Contributors to this Journal will, no doubt, continue to develop the models 
discussed there as well, perhaps, as introducing some of the nonlinear wave/chaotic 
dynamics ideas currently fashionable in geophysical fluid dynamics. 

I should like to thank Dr John Laufer and his colleagues a t  University of Southern 
California for their hospitality during a visit in which this paper was written. 

Figures in this paper are reproduced by kind permission of the authors (as indicated 
in the text) and of Cambridge University Press, Academic Press, Springer-Verlag 
and Oxford University Press. 
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